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This Memorandum extends to economic models some recently

discovered counterexamples in n-person solution theory. It is part

of a continuing investigation by the authors of the application of

game theory to economics.
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SUM MARY

The "market games -games that derive from an exchange

economy in which the traders have continuous concave monetary

utility functions, are shown to be the same as the totally balanced

games'l-games which with all their subgames possess cores.

(The core of a game is the set of outcomes that no coalition can

profitably block. ) The coincidence of these two classes of games

is established with the aid of explicit transformations that generate

a game from a market and vice versa. It is further shown that any

game with a core has the same solutions, in the von Neumann-

Morgenstern sense, as some totally balanced game. Thus, a market

may be found that reproduces the solution behavior of any game that

has a core. In particular, using a recent result of Lucas (see

RM-5518"PiRA -6-tefi-tiader -ten-commodity market is described

that has no solution.

,....?
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ON MARKET GAMES

1. INTRODUCTION

Recent discovery of n-person games in the classical theory

which either possess no solutions [8,91, or have unusually

restricted classes of solutions [G;,7, 10, 18], has ra'ised the question

of whether these games are mere mathematical curiosities or

whether they could actually arise in application. Since the most

notable applications of n-person game theory to date have been to

economic models of exchange, or exchange and production [3, 13,

15, 16, 19-23] , the question may be put in a more concrete form:

Are there markets, or other basic economic systems, that when

interpreted as n-person games give rise to the newly-discovered

counterexamples? If so, can they be distinguished from the 0

ordinary run of market models, on some economic, heuristic, or j
even formal grounds-i. e., do they give any advance warning of

their peculiar solution properties?

These questions stimulated the present investigation. The

answers are "bad news": Yes, the games can arise in economics;

No, there are no outwardly distinguishing features. In reaching

these conclusions, however, we wyere led to a positixe result: a

surprisinply simple mathematical criterion that tells precisely

which ~games can arise from economic models of exchange (with

12.
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money). In fact, this criterion identifies a very fundamental class

of games, called "totally be-lanced", whose further study seems

merited quite apart from any consideration of solution abnormalities.

Of technical interest, our derivation of the basic properties of these

games and their solutions makes a substantial application of the

recently developed theory of balanced sets [1, 2, 11, 17), as

well as of the older work of Gillies on domination-equivalence

(4,53.

In the present note we confine our attention to the classical

theory "with side payments" [23]; this corresponds in the economic

interpretation to the assumption that an ideal money, free from

income effects or transfer costs, is available. We further restrict

ourselves to exchange economies, without explicit production or

consumption processes, in which the commodities are finite in

number and perfectly divisible and transferable, and in which the

traders, also finite in number, are motivated only by their own

final holdings of goods and money, their utility functions being

continuous and concave and additive in the money term.

For our immediate purpose, these strictures do not matter,

since the anomalous games are already attainable within the limited

class of ideal markets considered. B~ut for our larger purpose-

that of initiating a systematic study of "market games"

For a discussion of this assumption, see [20], pp. 807--808.

i
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as distinct from gaines in general-some relaxation may he

desirable, particalarly Aith regard to money. The prospects for

significant generalizations in this direction appear good, and we

intend to pursue them in subsequent work.

1. 1 Outline of the Contents

The notions of game, core, and balanced set are reviewed.

A game is called "balanced" if it has a core, and "totally balanced"

if all of the subgames obtained by restricting the set of players

have cores as well. (Sec. 2.)

A "market" is defined as an exchange economy with money,

in which the traders have utility functions that are continuous and

concave. The method of passing from a market to its "market

game" is described. The market games with n traders form a

closed convex cone in the space of all n-person games with side

payments. Every market game not only has a core, but is totally

balanced. (Sec. 3.)

A canonical market form-the "direct market"-is introduced,

in which the commodities are in effect the traders themselves, made

infinitely divisible, and the utility functions are all the same and

are homogeneous of degree one. The method of passing from an),

game to its direct market is described, the utilities being based

upon the optimal assignment of "fractional players" to the various

coalitional activities. The "cover" of a game is defined as the
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raarket game of its direct market; the cover is at least as

profitable to all coalitions as the original game. Every totally

balanced game is its own cover, and hence is a market game.

This shows that the class of market games and the class of totally

balanced games are the same. Moreover, every market is game-

theoretically equivalent to a direct market. (See. 4.)

The notions of imputation, domination, and solution are

reviewed. Games are "d--equivalent" if they have identical

domination relations on identical imputation spaces. They therefore

have identical solutions (or lack of solutions), and their cores, if any,

are the same. It is shown that every balanced game is d-equivalent

to a totally balanced game. Hence, for every game with a core,

there is a market that has precisely the same set of solutions. (See. 5. )

Using Lucas's solutionless game [8, (J, a direct market is

constructed that has ten traders and ten commodities (plus money), and

that has no solution. Another version in the form of a production economy

is also presented. Several other examples of market games with

unusual solution properties are mentioned, and in one case, where

the solutions contain arbitrary components, the utility function is

worked out explicitly. (Sec. 6.)

___ _ ___ _____ ___'



2. GAMES AND CORES

For the purpose of this note, a game is an ordered pair

(N; v), where N is a finite set [the players] and v is a function

from the subsets of N [coalitions] to the reals satisfying v(O) = 0,

called the characteristic function. A payoff vector for (N; v) is a

N
point a in the IN I-dimensional vector space 1-.N whose coordinates

a are indexed by the elements of N. If ateN and SCN, we shall

write a(S) as an abbreviation for E is a .

The core of (N; v) is the set of all payoff vectors a, if any,

such that

(2-1) a(S) > v(S), all S C N,

and

(2-2) a(N) v(N).

If no such a exists, we shall say that (N; v) has no core. (Thus,

in this usage, the core may be nonexistent, but is never empty.)

2. 1 Balanced Sets of Coalitions

A balanced set f6 is defined to be a collection of subsets S

of N with the property that there exist positive numbers yS, S c t5

called "weights," such that for each ieN we have

(2-3) S 1.

its
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If all YS 1, we have a partition of N; thus, balanced sets may be

regarded as generalized partitions.

For example, if N = 1234, then £12, 13, 14, 2341 is a

balanced set, by virtue of the weights 1/3, 1/3, 1/3, 2/3.

A game (N; v) is called balanced if

(2-4) Y v(S) v(N)
Sf

holds for every balanced set 8 with weights £ y .

THEOREM 1. A game has a core if and only if it is

balanced.

This is proved in [ 17]. In Scarf's generalization to games with-

out transferable utility [11], all balanced games have cores, but some

games with cores are not balanced. If our present results can be

generalized in this direction, we conjecture that it will be the balance

property, rather than the core property, that plays the central role.

2. 2 Totally Balanced Games

By a subgame of (N; v) we shall mean a game (R; v) with

0OCR C N. Here v is the same function, but implicitly restricted

to the domain consisting of the subsets of R. A game will be said

These conditions are heavily redundant; it suffices to assert
(2-4) for the minimal balanced sets B (which moreover have unique
weights). In the case of a superadditive game, only the minimal
balanced sets that contain no disjoint elements are needed. (See
C17).)
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to he totally balanced if all of its suhLgaines are balanced. In other

words, all subgames of a totally balanced game have cores.

Not all balanced games are totally balanced. For example,

let N = 1234 and define v(S) = 0,0, 1,2 for Isi = 0,1,3,4

respectively, and, for IsI = 2:

v(12) = v(13) = v(23) = t

v(14) = v(24) = v(34) - 0.

This game has a core, including the vector ( , , , ) among

others. But it is not totally balanced, since the subgarne (123;v)

has no core.



3. MAIIK1TS AND MARKE , GAMI'S

For the purpose of this note, a market is a special

mathematical model, denoted by the symbol (T, G, A, U). Here

r is a finite set [the traders]; G is the nonnegative orthant of a

finite-dimensional vector space [the commodity space]; A (ai:i, T1}

is an indexed collection of points in G [the initial endowments]

and U u: leT is an indexed collection of continuous, concave

functions from G to the reals [the utility functions]. When we

wish to indicate that u' u, all icT [the special case of "equal

tastes"] , we shall sometimes denote the market by the more

specific symbol (r, G, A, fu).

If S is any subset of T, an indexed collection X S  x : i S1 cc

such that EsX = F Sa will be called a feasible S-allocation of the market

(T, G, A, U).

A market (T, G, A, U) can be used to "generate" a game

(N; v) in a natural way. We set N 'T, and define v by

(3-1) v(S) max L Ux) all S c N
XS iS

where the maxitnum runs over all feasible S-allocations

Any game that can be generated in this way from some market

is called a market game.

For examples, see 13, 15, 16, 20, 21, 22]. The abstroct
definition of "market gaie" iroposed in [13] is not equivalent to the
present one, howeve,iJ
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i
In the special case of identical utility functions u u, we

have

(3-2) v(S) S I u(= a /ISI), all SCN

this is a simple consequence of concavity. In the still more special

case where u is homogeneous of degree 1, we have simply

(3-3) v(S) = u(Es a ), all S_ CN.

3. 1 Some Elementary Properties

The following two theorems are of a routine nature; they

show that the property of being a market game is invariant under

"strategic equivalence, " and that the set of all market games on N

forms a convex cone in the (2 INJ-1)-dimensional space of all

games on N.

THEOREM ?. If (N; v) is a market game, if X > 0,

and if c is an additive set function on N, then (N; Xv4c)

is a market game.

Proof. We need merely take any market that generates

(N; v) and replace each utility function u (x) by Xu (x) +c(i ).

Q. E. D.

TIIEORIM 3. If (N; v') and (N; v") are market games ,

then (N, v'4v") is a marketUaMe.
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Proof. Let (N, G', A', U') and (N, G" " U")

that generate (N; v') and (N; v") respectively. We shall superimpose

these two markets, keeping the two sets of commodities distinct.

Specifically, let G he the set of all ordered pairs (x', x") of points

from G' and G" respectively; let A be the set of pairs (a '", al'l ) of

correspondingly-indexed elements of A' and A"; and let U be the

set of sums:

u'((x', x")) = u''(x') + u x

of correspondingly-indexed elements of U' and U". One can then

verify without difficulty that the elements of U are continuous and

concave on the domain G (which is a nonnegative orthant in its own

right), so that (N, G, A, U) is a market. Finally, one can verify

without difficulty that (N, G, A, U) generates the game (N; v'+v").

Q. E. D.

3. 2 The Core Theorem

THEOREM 4. Ever, market game has a core.

This theorem is well-known, and has been generalized well

beyond the limited class of markets we arc now considerin,.. Never-

theless we shall give two proofs, both short, for the sake of the

insights they provide. In thc first, we in cffect detertnine a

competitive equilibrium for the generating market (a simple matter

i



when there is transferable utility), and then show that the

competitive payoff vector lies in the core. In the second proof,

we show directly that the game is balanced, and then apply Theorem 1.

Proof 1. Let (N; v) be a market game and let (N, G, A, U)

be a market that generates it. Let B = (i) :itNI be a feasible

N-allocation that achieves the value v(N) in (3-1) for S = N. The

maximization in (3-1) ensures the existence of a vector p

(competitive prices-but possibly negative!) such that for each

iN, the expression

(3-4) ut(x)- p (x-a), x (G,

is maximized at x b . Define the payoff vector 13 by

i i .
3 = u (b )-p. (b -a); we assert that 0 is in the core. Indeed,

S
let S be any nonempty subset of N, and let Y be a feasible

S-allocation that achieves the maximum in (3-1), so that

ui) i
v(S) E u (y Since b t maximizes (3-4), we have

1 > u (y)- p (y -a i .

Summing over itS, we obtain

O(S) > E0u(y') - 0 v(),

as d i),(-) aoreqer, if S = N we may take Y B

and obtain r,(N) - v(N), as required by (2-2). Q. E. D.1H



-12-

Proof 2. Let (N, G, A, U) be a generating market for (N; v),S i

and, for each S C N, let Y' ays: itSI be a maximizing S-allocation

in (3-1). Let 5 be balanced, with weights (Y S: Si 8. Then we have

sV(S) = Y Y =  YS U(Ys).

a S it N St/3

S3 i

Now define

II i= YsYsEtG, all iEN.

Sci

Note that z is a center of gravity of the points y., by virtue of (2-3).

Hence, by concavity,

(3-5) Y v(S) ui

But Z -z': icNl is a feasible N-allocation, since

z Z Y = S YS E a' = a.
IN SE S it S SCS if S ieN

Hence the right side of (3-5) is < v(N), and we conclude from (2-t)

that the game is balanced and from Theorem I that it has a core.

Q.E.D.

COROLLARY. Every market game is totally balanced.

A ...
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Proof. If (N; v) is generated by the market (N, C, A, U),

and if 0 C1i N, then we may define a inal'lct (13, G, A', U'),

where A' and L' come from A and U by simply omitting all ai and
j

u for i not in 1R. This market clearly generates the game (0'; v.

Hence (I; v) is balanced. Q. E. D.

Our next objective will he to prove the converse of this

corollary-i. e., that every totally balanced game is a market

game.

.I
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4. DIRECT MARKETS

A special class of markets, called direct tnarkets will

play an important role in the sequel. They have the form

.T T

(T, F~ T UTI. , IT , (ul),

where u is homogeneous of degree I as well as concave and

continuous. Here E T denotes the nonnegative orthant of the vector

T T
space E with coordinates indexed by the members of T, and I

T
denotes the collection of unit vectors of E -in effect, the identity

matrix on T.

Thus, in a direct market, each trader starts with one unit of

a personal commodity [e. g. , his time, his labor, his participation,

"himself"]. When it is brought together with other personal

commodities, we may imagine that some desirable state of affairs

is created, having a total value to the traders that is independent

(because of homogeneity and equal taste-) of how they distribute

the benefits.

Let e S denote the vector in E N in which e. - I or 0 according

as itS or iS; geometrically, these vectors represent the vertices

of the unit cube in E+N . Then the characteristic function of the

market game generated by a direct market can be put into a very

simple form:

(4-1) v(S) u(eS), all SC N

A
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(compare (3-3)). Note that only finitely many commodity bundles

are involved in this expression.

4. 1 The Direct .Market Generated by a Gaine

Thuts far we used markets to generate games. We now go

the reverse route, associating with any game (not niecessarily a

market game) a certain "market of coalitions. " Specifically, we

shall say that the game (N; v) "generates" the direct market

N EN

(4-2) u(x) = max E Ys V(S), all xcE+
lyS) SCN

maximized over all sets of nonnegative yS satisfying

(4-3) YS = xi, all itN.
S3 i

To explain this market, we may imagine that each coalition

S has an activity S that can earn v(S) dollars if all the members

of S participate fully. More generally, it earns ysv(S) dollars if

each member of S devotes the fraction yS of "himself" to S,

The maximization in (4-2) is then nothing but an optimal assignment

of activity levels y to the various s's, subject to the condition
S S 3

(4-3) that each player, i, distribute exactly the amount x. of; 1

The essence of this model was suggested by D. Cantor and
M. Maschler (private correspondence, 1962).

I
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"himself" among his activities, including of course the "solo"

activity

The utility function defined by (.1-2) ib obviously homogeneous

of degree 1, as required for a direct market. But before we can

claim to have defined a market, let alone a direct market, we

must also establish that (4-2) is continuous and concave. Continuity

gives no trouble. To show concavity, it suffices (with homogeneity)

to prove that

u(x) + u(y) < U(x+y), all x, Ne E N

This is nit difficult. By definition, there exist sets of nonnegative

coefficients y SI and "S I such that

u(s) - ysv(,), u(y) = V();
SCN ScN

and

'i xS Yi' all iEN.

Hence y + S is admissible for x+y, and (4-2) yields

u(x4y) > (S A) v(S) u(x) + u(y),

as required.
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4. 2. The Cover of a Game

Me shall now use the direct market generated by a game

(N; v) to generate in turn a new game (N; v)-scheinatically:

arbitrary game-> direct market- market game.

We shall call (N; v) the cover of (N; v).

Combining (4-1) with (4-2) and (4-3), we obtain the following

relation between v and v:

(4-4) v(m) max E YsV(S), all BcN
SS

maximized over yS >-- 0 such that

(4-5) YS all iER.
SCR
S)

Note that we could have taken (4-4), (4-5) as the definition of "cover",

bypassing the intermediate market. Indeed, the cover of a game

proves to be a useful mathematical concept quite apart from the present

economic application.

We see immediately that

(4-6) all R1aN,

since one of the admissible choices for fYSy in (4-4) is to take

= I and all other ' S :" 0. Moreover, the equality cannot always

hold in (4-6); indeed, v comes from a market game while v was

k00
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arbitrary. Thus, the mapping v-- v takes an arbitrary

characteristic function and, by perhaps increasing some values,

turns it into the characteristic function of a market game.

LEMMA 1. If (N; v) has a core, then v(N) v(N),

and conversely.

Proof. Let a be in the core of (N; v). Then

v(N) = max Y Sv(S)
iy S1 SCN

< max y S) = ma, Z ,
Iy' SCN IyS1 iN SziS S

= max O aN)
(ys1 i N

= v(N),

the successivw., lines being justified by (4-4), (2-I), (4-5), and

(2-2). In view of (4--6) we therefore have v(N) = v(N).

Conversely, if (N; v) has no core, then (2-4) fails for some

balanced set 7-, with weights fyS . Defining Y, = 0 for S

we see that (4-5) holds (for R = N). Then (4-4) and the denial

of (2-4) give us

V(N) > _ v(S) - v v(S) > v(N);
ScN SF,

Hence v(N) v(N). Q. F. D.
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L EMMA 2. A totally balanced ;,:arte is equal to its cover.

Proof. Let (N; v) be the cover of (N; v), and let 0 cRC N.

Then it is clear from the definitions that the cover of (R; v) is

(R; v). But if (N; v) is totally balanced, then (R; v) has a core

and v() v(R) by Lemma 1. Hence v = v. Q.E.D.

THEOREEM 5. A game is a market game if and only

if it is tocally balanced.

Proof. We proved earlier (corollary to Theorem 4) that

market games are totally balanced. We have just now shown

that totally balanced games are equal to their covers, which are

market games. Q.E.D.

4. 3 Equivalence of Markets

There is one more result of some heuristic interest that we

can extract from the present discussion, before entering the realm

of solution theory. This time, we follow the scheme:

arbitrary market- market game- direct market.

Let us call two markets game-theoretically equivalent if they

generate the same market game. Then the two markets in the

above scheme are equivalent in this way, since the cover of the

game in the middle is just the market game of the market on the
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right, anid these two games are equal by Lemm-a 2. This proves

THEOIENI 6. Every market is game-theoretically

equivalent to a direct mairket.
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5. SOLUTIONS

An imputation for a game (N; v) is a payoff vector a that

satisfies

(5-1) a(N) = v(N)

and

(5-2) > v(fi), all itN.

A comparison with (2-1) and (2-2) shov.s that the imputation set

is certainly not empty if the game has a core.

Classical solution theory [23] rests upon a relation of

"domination" between imputations. If a and 2 are imputations

for (N; v), then a is said to dominate 3 (N ritten oC--f3) if there is

some nonempty subset S of N such that

i ial S
(5-3) a > all i S

and

(5-4 a(s) -V(S)

Some approaches to solution theory omit (5-2), relying on
the solution concept itself to impose whatever "individual rationality"
the situation may demand [5, 12]. This modification in the definition
of solution would make little difference to our present discussion,
except for eliminating the fussy condition (5-5). In particular,
Theorem 7 and all of Sec. 6 would remain correct as written.

iI
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A solution of (N; v) is lefiled to he any set of imputations,

mutually undominativig, that collectively dominate all other

imputations. Our only concern with this definition, technically, is

to observe that it depends only on the concepts of imputation and

domination; any further information conveyed by the characteristic

function is disregarded.

The core is also closely dependent on these concepts. In

fact, the core, when it exists, is precisely the set of undominated

imputations. The converse is not universally true-there are some

games that nave undominated imputations but no core. We can

rule this out, however, by imposing the very weak condition:

(5-5) v(S) 4 <v( 1 v(N), all SCN,
N-S

which is satisfied by all games likely to be met in practice.

5. 1 Domination-equivalence

Two games will be called d-equivalent (domination-equivalent)

if they have the same imputation sets and the same domination

relations on them. It follows that d--equivalent games have

We are indebted to Mr. E. Kohlberg for this observation.

Thus, (5-5) is Implied by either superadditivity or balanced-
ness, but is weaker than both. For a game in nornalized form,
I. e. , with v(i) o, it merely states that no coalition is worth
more than N.

II ,A
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precisely the same solutions, or lack of solutions. Also, if they

have cores, they have the same cores; moreover, within the class

of games satisfying (5-5) the property of being balanced is

preserved under d-equivalence. However, the property of being

totally balanced is not so preserved, as the following lemma reveals.

LEMMA 3. Every balanced game is d-equivalent to

its cover.

Proof. Let (N; v) be balanced. By Lemma 1, v(N) = v(N)

and by (4-4), v (i)) = v(fi1); hence the two games have the same

imputations. Denote the respective domination relations by H

and &-4. By (4-6) and (5-4) we see at once that the latter is , if

anything, stronger than the former-i.e., ae-41 implies ae--i'3.

It remains to prove the converse.

Assume, per contra, that a and $ are imputations satisfying

a -4'$ but not a - Then for some nonempty subset R of N

we have

a> L, all icR,

and

(5-6) a (R) < (R).
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To avoid a -13 we must have

(5-7) a(S) > v(S)

ior all S, 0 C S a B. Referring to the definition of v, we see that

there are nonnegative weights ySP S C: R, such that

v(R) -- yS v(S)
S-:R

and

Z = it all icR.
S i,

SgiB

Hence, using (5-7)

Z R < =oaS (R).
SCR

The strict inequality here contradicts (5-6). Q.E.D.

By a "solution" of a market, we shall mean a solution of the

associated market game.

THEOREM 7. If (N; v) is any balanced game whatever t

then there is a market that has precisely the same

solutions as (N; v).

Proof. The main work has been done in Lemma 3. Indeed,

let (N ET IT (ul ) be the direct market generated by (N; v).
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Then the solutions of this market are the solutions of (N; v), which

by the lemma is d--equivalent to (N; v) and hence has the same

solutions. Q.E.D.

5. 2 A Technical lemark

The notion of d-equivalence is essentially due to Gillies [4, 5],

though he works with a broader definition of imputation, not tied to

the characteristic function by (5-1). He defines a vital coalition as

one that achieves some domination that no other coalition can achieve,

and shows that two games are d-equivalent (in the present sense) if

and only if they have (i) the same imputation sets, (ii) the same vital

coalitions, and (iii) the same v-values on their vital coalitions.

A necessary (but not sufficient) condition for a coalition to be

vital is that it cannot be partitioned into proper subsets, the sum of

whose v-values equals or exceeds its own v-value. Sufficiency

would require the generalized partitioning provided by balanced sets.

Given a game (N; v), we can define its "least superadditive

majorant" (N; ) by

(5-8) 7(S) = max V(S
h ),

the maximization running over all partitions [Shl of S. (Compare

(4-4) (4-5).) It can be shown that (N) = v(N) if and only if (N; v)

has a core (cf. Lemma I above), in which case the two games are

d-equivalent. Thus, every game with a core is d-equivalent to a

superadditive game.
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However, as Gillies observes, d-equivalence can also hold

nontrivially among superadditive games. That is, it may be

possible to push the v-value of some nonvital coalition higher than

the value demanded by superadditivity, without making the coalition

vital. We are using the full power of this observation, since the cover

v can be thought of as the "greatest d-equivalent majorant" of v.

Thus, v < < v, and all three may be different.

For example, at the end of Sec. 2, v(123) may be increased
from I to 3/2 w.ithout making 123 vital.
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6. EXAMPLES

Lucas's 10-person game [8, 9) with no solution has players

N = 1234567890 and the following characteristic function:

v(T2) = v(34) = v(56) = v(78) = v(90) = I

v(137) = v(139) = v(T-57) = v(159) v(357) =v(359) =2

v(1479) = v(2579) = v(3679) = 2

(6-1) v(1379) = v(1579) = v(3579) = 3

v(13579) = 4

v(N) = 5, and

v(S) 0, all otherSN.

The game has a core, containing among others the imputation

that gives each "odd" player 1. It is not superadditive (for example,

v(12) + v(34) > v(1234)); however it is d-equivalent to its least

superadditive majorant (N, i), which can be calculated without

difficulty, using (5-8). Moreover, one can verify that the latter is

totally balanced, i.e. ,that v in this case. Thus, (N, ), defined

by (6-1) and (5-8), is a market game with no solution.

The corresponding market with no solution, provided by

Theorem 7, has ten traders and ten commodities, plus money. The

traders have identical continuous concave homogeneous utilities

The full core is a five-dimensional polyhedron, having vertices
Se : S "13579, 23579, 14579, 13679, 13589, and 13570.

: J .
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u(x), which may be calculated by applying (4-2), (4-3) to (6-1).

Note that positive weights YS need be considered only for the

eighteen vital coalitions and the ten singletons. Of course, this

is not the only utility function that works, since only a finite set

of its values are actually used (cf. (4-1)).

6. 1 A Production Model

Perhaps the most straightforward economic realization of

Lucas's game is in the form of a production economy. (Compare

the "activity" description in Sec. 4. 1.) The production possibilities

are generated by 18 specific processes, which produce the same

consumer good (at constant returns to scale) out of various combinations

of the raw materials. (See Table 1.) Each entrepreneur starts

with one unit of the correspondingly indexed raw material. The

utility is simply the consumer good: u(x) x; hence it is not

necessary to postulate a separate money.

This type of construction is perfectly general: a production

model can be set up in a similar fashion for any other game in

characteristic function form, one activity being required for, each

vital coalition. The market game generated by such a model will

The singleton weights are needed as slack variables, because
we used "-" in (4-3) instead of ,<,.

i
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Inputs Output
xI  x2  x 3  x4  x 5  x6  x7  x8  x9  xto x 1

1  41
1 1

1 1

I1 2

1 1

1 2

1 1 1 2
1 1 2
1 1 1 2 i

1 1 2 !

1 2
11 11 2

1 1 1 1 2

1 1 1 1 3
I 1 I I 3

1 1 1 1 3

1 1 1 1 1 4

Table l.

tI
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be the cover of the original game, and will have the same core

and solutions provided that the original game was balanced.

6. 2 Other Examples

Lucas £6, 7, 10) gives several examples of games in which

the solution is unique but does not coincide with the.core. In C 10]

he also describes a symmetric 8-person game, very similar to

the above 10-person game, that has an infinity of solutions but

none that treats the symmetric players symmetrically. Shapley

[18] describes a 20-person game, of the same general type, every

one of whose many solutions consists of the core, which is a

straight line, plus an infinity of mutually disjoint closed sets that

intersect the core in a dense point-set of the first category. A

common feature of all these "pathological" examples is the existence

of a core; hence, by Theorem 7, they are d-equivalent to market

games that have the same solution behavior.

We close with another "pathological" example, of an older

vintage £14), which because of its simple form leads to a direct

market with utilities that we can write down explicitly. The game

has players N - 123 ... n, with n> 4, and its characteristic

function is given by
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( v(N-( ) ) v(N-(2)) = v(N-i3D = v(N) =

62 v(S) = 0, all other coalitions S.

Thus, to win anything requires the participation of a majority of

123, plus all of the "veto" players 4,... , n. The core is the set

of all imputations a that satisfy o, = a 2 = a3 0. It is easily

verified that the game is totally balanced: v = v. There are many

solutions; but the remarkable feature of the game is a certain

subclass of solutions, as follows:

Let B denote the set of imputation a that satisfy a, = 0,
e

a 2 = a 3 = e > 0. Thus, l3e is a (n-3)-dimensional closed convex

subset of the imputation space. In [ 14] it was shown that one may

start with any closed subset of B whatever, and extend it to a
e I

solution of the game by adding only imputations that are at least

e/2 distant from B . The arbitrary starting set remains a distinct,e

isolated portion of the full solution. For example, if n = 4 (the

simplest case), an arbitrary closed set of points on a certain line

can be used.

To determine the direct market of this game, we apply (4-2),

(4-3) to (6-2) and obtain the utility function

The metric used here is p(a, ) = max Ina-01. Our present
claim entails a slight change in the construction given in r 141,
which merely keeps the rest of the solution away from the arbitrary
subset of Be, rather than from B itself.

ie



-32-

u(x) = max(y1 4 v 2 4 y ),

maximized subject to

1 3Y> Op y > 0, v> 0;

i!

2 31 31 2<x+ Y < y x < X3

1 2 v3
Y + Y V < xi, i 4 4.,n;

where y abbreviates VN_{il This reduces to the closed form:

(6-3) u(x) = min Fx +x 2 , Xl4X3, x2+X3, 2 x 4 ,.. x I1 1 2 12 3' 2 -' ' nl

We see that u is the envelope-from-below of n+l very simple linear functions.

Thus, an n-trader n--commodity market having the solutions

containing arbitrary components, as described above, is obtained

by giving the i-th trader one unit of the i-th commodity, i 1,.. n,

and assigning them all the utility function (6-3).

4
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